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Abstract 
 

For our work in Language in Mathematics, we developed a framework for analyzing mathematics tasks along lines of 
mathematics concepts, mathematics practices, contexts, and language demands. By referencing these features, we worked 
across our distinct academic specializations of mathematics education and language/literacy education more easily. They 
also helped us to draw important distinctions between task characteristics (concepts and practices) that cannot be modified 
without changing what is being assessed mathematically; and those that can be changed (context and language demands) 
as long as the changes are done with care. We share our framework, which can be used for curricular and instructional 
purposes, in hopes it can help other educators to work cross disciplinary areas for improving the accessibility of 
mathematics tasks more generally. 
 

Discussion And Reflection Enhancement (DARE) Pre-Reading Questions 
 

1. What	is	an	example	when	the	real-world	context	of	a	mathematics	problem	seemed	to	affect	that	task’s	
accessibility	for	English	language	learners	in	your	classroom?	
	

2. What	is	an	example	when	the	language	of	a	mathematics	problem	seemed	to	affect	that	task’s	accessibility	
for	English	language	learners	in	your	classroom?	
	

3. What	does	the	CCSSM	say	about	#1?	
	

4. What	does	the	CCSSM	say	about	#2?	
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This article provides an illustrative summary of a four-
dimensional framework that we used in creating an 
assessment of academic language in mathematics for 
Language in Math (LiM), a research and development 
project funded by the Institute for Educational Sciences 
(IES). LiM aimed to combine what we know about how 
upper-elementary and middle-school students learn 
mathematics with what we know about how students who 
speak Spanish as their first language acquire English as a 
later language. In LiM, we worked with certified grade 4-
8 teachers who taught mathematics to self-contained 
classes that included students who had been identified by 
the school as “limited English proficient.” At the time that 
LiM was implemented, “LEP” was Florida’s terminology, 
though we prefer the term English-language learner 
(ELL). Almost all the students in our study were at the 
intermediate or advanced proficiency stage of learning 
English. The assessment of academic language in 
mathematics was meant to give us a sense of how changes 
in mathematics-relevant language would affect ELL 
students’ performance on and reasoning about tasks that 
are typically administered in mathematics tests. 
 

The Framework 
 

Mathematical content, mathematical practices, context, 
and language demands are terms that gloss over some 
important distinctions found in the research literature. Yet 
these terms provided a good starting point for us to 
communicate ideas among ourselves, and now to teachers 
and other colleagues, without getting too bogged down in 
details. 
 
Mathematical Content 

 
A task’s mathematical content is the mathematical idea(s) 
or concept(s) that an individual must call upon in order to 
solve that task. On the Shoulders of Giants (Steen, 1990) 
and the domains found in the Common Core State 

Standards in Mathematics (CCSSM; National Governors 
Association and Council of Chief State School Officers, 
2010) provide ways of describing the “big ideas” of 
mathematics.  
 
Mathematical content can also entail somewhat smaller-
sized ideas such as place value, fraction equivalence, or 
linear expressions.  Mathematics content may become 
even more narrowly focused as in “knowing that 
fractions, percents, and decimals are all different ways of 
expressing the same number” and/or “adding two 
fractions with the same denominator.” 
 
Mathematical Practices 
 
A task’s mathematical practices are the social and 
conceptual processes that an individual must often call 
upon to solve tasks; these may differ depending upon the 
task’s content and context. Heuristics described in How to 
Solve It (Pólya, 1957) reflect practices one may use when 
solving problems, and the eight cross-cutting practices 
found in the Common Core State Standards in 
Mathematics (NGA & CCSSO, 2010) provide examples 
of practices being promoted for school-mathematics. The 
CCSSM practices have social and psychological aspects: 
(1) make sense of problems and persevere in solving 
them; (2) reason abstractly and quantitatively; (3) 
construct viable arguments and critique the reasoning of 
others; (4) model with mathematics; (5) use appropriate 
tools strategically; (6) attend to precision; (7) look for and 
make use of structure and (8) look for and express 
regularity in repeated reasoning.  
 
Context 
 
Context refers to the setting within which a mathematics 
task is found and which gives rise to that mathematical 
problem. Tasks vary in how much support their contexts 
provide:  familiar or even personally-interesting  contexts 
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might motivate and help someone to access mathematics 
concepts and to engage in the mathematical practices that 
are needed to solve the task because they know and 
understand the context in which the task is embedded. 
Unfortunately, too many tasks incorporate contexts that 
create barriers and/or have no meaning for students who 
become confused and unmotivated (Jackson, Garrison, 
Wilson, Gibbons, & Shahan, 2013). Computational tasks 
are often said to have “no contexts”, though computations 
can also be thought of as purely “mathematical contexts.” 
 
Language Demands 
 
Language demands refer to the language-processing 
demands that are placed on the reader of a task. Because 
we were focused on text-based assessment tasks (that 
include printed words, graphic representations, symbols, 
and numbers) that had to be seen, this dimension excluded 
the demands of certain language modalities (speaking, 
listening, writing). When extending this framework to 
instruction, all five language modalities (reading, writing, 
listening, speaking, and viewing and representing) need 
to be considered. For example, in Avalos, Medina and 
Secada (2015), we included attention to oral and graphical 
forms of communication in our presentation on how 
teachers might use visual graphics to help multilingual 
students access algebraic word problems. 
 

An Example 
 

Our goal was to create or revise assessment tasks to be 
more accessible to English language learners and so that 
we could better understand how modifications in a task’s 
non-core-mathematical features (i.e., context and 
language demands) affect student performance. By 
comparing performance on tasks with relatively higher to 
relatively lower language demands, we hoped to better 
understand how students’ academic language proficiency 
in mathematics affects their performance. 
 
The following example is drawn from the Florida 
Comprehensive Assessment Test 2.0 (FCAT; Florida 
Department of Education, 2011). According to the Test 
Book and Answer Key, this task corresponds to 
Benchmark Code MA.8.A.1.1 (FLDOE, 2011), which in 

turn refers to Mathematics, 8th grade, Big Idea 1 (Analyze 
and represent linear functions, and solve linear equations 
and systems of linear equations), Sub-idea 1 (Create and 
interpret tables, graphs, and models to represent, analyze, 
and solve problems related to linear equations, including 
analysis of domain, range, and the difference between 
discrete and continuous data) (CPALMS, 2008). 
 

Sami installed a 6-foot-tall cylindrical storage tank to 
collect rainwater from the roof of her house. She used 
the rainwater to water the lawn and garden during dry 
spells. Sami recorded the rise in the water level in her 
storage tank after each of 3 rainstorms. Her results are 
shown in the table below.  

 

Rainfall (in inches) 
Rise of Water Level 
in Storage Tank (in 
inches) 

1.5 24 
0.5   8 
2.5 40 

 

Which is the best prediction of the rise of the water 
level, in inches, in her tank after a storm produced 2.25 
inches of rain?  

 
A. 16 inches   B. 28 inches                  
C. 32 inches  D. 36 inches 

Figure 1. Sample Task 1 (FCAT; Florida Department 
of Education, 2011) 

 
Mathematical Content and Mathematical Practices 

 
From sub-idea 1, above, this task requires students to “… 
interpret tables, … and models to … solve problems 
related to linear equations ….”   This task does not include 
specific mathematical practices in the sense that students 
are not required to demonstrate or to use them as a 
condition of being scored right.  Any changes in either 
content or practice would undermine this task’s validity 
when it is used for assessment. Hence, we kept these 
features of the task, while changing other task features in 
an effort to make it more accessible.  
 
Context 
 
The context for Sample Task 1 entails a large container 
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filling with rain water for use in gardening. In Southeast 
Florida, rainy weather is common; water pooling in pots 
or containers to use for other purposes could link to the 
problem’s context of water collection. Hence ELL 
students may be familiar with a task entailing water 
collection. On the other hand, tasks like this one are 
criticized for failing to motivate a need for storing 
rainwater in the first place and for predicting the amount 
of rainwater rise in a tank based on predicted rainfall.  

 
We tried to increase the likelihood that students would be 
familiar with the problem context by referencing a 
school’s garden, something that many middle schools are 
planting and that need to be watered regularly.  We 
hypothesized that students would also find this setting 
more motivating than a context involving an unknown 
individual. Another alternative is simply to strip away all 
contexts, thereby converting this task into something that 
is purely symbolic. 
 
Language Demands 
 
Among the features that make text more difficult to read 
and understand are the unnecessary inclusion and/or use 
of: 

• extraneous information, such as the location of 
water storage cylinder on the roof; 

• overly long sentences, such as the problem 
question; 

• technical vocabulary, such as stating that the 
storage container is cylindrical.1 

 
In revising this task, we addressed the above language 
demand concerns. Also, we did not use a picture to try to 
reduce language load because we were not sure that ELL 
students would understand how the picture referred to 
what had been written, which is necessary for the picture 
to be helpful.  

 
 

                                                        
1 We understand that the cistern’s placement on the roof 
allows gravity to empty it; but so does its being placed 
anywhere above the ground. That the cistern is a 
cylinder may explain why there is a continuously linear 

Result: Two Revised Tasks 
 
Informed by our analysis, we created two revised tasks 
(see Figures 2 and 3). 
 

A 6-foot-tall storage tank is used to collect rainwater 
which is then used to water the school’s garden during 
dry spells. Sami recorded how much the water level 
rises in the storage tank after each rainstorm.  Her 
results for 3 rainstorms are in the table below.  

 

Rainfall (in inches) 
Rise of Water Level 
in Storage Tank (in 
inches) 

1.5 24 
0.5 8 
2.5 40 

 
A recent storm produced 2.25 inches of rain. How 
much did the water in the tank rise?   
 
A. 16 inches                   C. 32 inches  
B. 28 inches                   D. 36 inches 
 
Figure 2. Alternative Wording 

 
Given the following relationship between x and y: 
 

x y 
1.5 24 
0.5 8 
2.5 40 

 
If x = 2.25, then y = ?   
 
A. 16                           C. 32 
B. 28                           D. 36 
 
Figure 3. Purely symbolic 

 

relationship between the amount of rainfall and the 
rising water levels; yet the same would be true for a cube 
or rectangular polyhedron. Hence while correct, this 
information is not central to the problem’s statement. 
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Figures 2 and 3 maintain the original task’s mathematical 
content and non-specification of mathematical practices. 
Figure 2 modifies the context to be more motivating; and 
it modifies the language demands so that the resulting task 
would be more accessible to English language learners. 
Figure 3 removes all context and strips language demands 
to a minimum in case purely symbolic problems are, in 
fact, more accessible to ELL students.  
 

Extension to Curriculum and Teaching 
 

Concerns for construct validity in assessment limit our 
ability to modify a task’s mathematical content and 
mathematical practice.  However, no such constraints 
limit our ability to modify the tasks that comprise 
students’ mathematics curriculum and its teaching.  
 
This task could be modified by changing some 
combination of its mathematics content, mathematics 
practices, context, and language demands for purposes of 
curriculum and teaching. Some modifications might work 
alone or in tandem to make the task more accessible to 
ELL students; others, to make it more difficult. The 
changes would depend on teachers’ instructional goals.  
 

Mathematical Content 
 
Changes in the shape of the water container could 
motivate exploration of non-linear functions. Instead of 
being cylindrical, the container could be spherical (as in 
the case of some containers that sit atop water towers) or 
even a series of pyramids and polyhedra (as in the case of 
swimming pools). The resulting tables would represent 
non-linear functions.  
 
Switching over to real-world water containment systems, 
such as lakes or ponds, would require the use of some 
combination of shapes to approximate their volume. The 
resulting tables relating rainfall to the rise in the 
containers’ water levels would be quite complex as is the 
case for functions that are piece-wise linear or non-linear.  
 
For these examples, changes in context would lead to 
changes in mathematical content. Furthermore, the shapes 
of the water containers would actually matter; and hence, 

the task’s language demands would also be affected. 
 
Mathematical Practices 
 
Two mathematics practices found in the Common Core 
are implicit.  

• If students drew a picture to represent the 
container and sketched it filled at various levels, 
they could be making sense of the problem 
(practice #1); 

• If students reorganized the table so that rainfall 
amounts and corresponding rises in water level 
were ordered from lowest to highest, they are 
looking for structure (practice #7);  

• If students halved the amount of rainwater rise 
corresponding to 0.5 inches and then, either (a) 
built up from 1.5 inches of rain to 2.25 inches by 
adding the amounts of rainwater rise 
corresponding to 0.5 and 0.25 inches or (b) 
reduced the rainwater rise corresponding to 2.5 
inches of rain by the amount corresponding to 
0.25 inches, they are making use of structure 
(practice #7). 

 
Alternate strategies for solving this task could include (a) 
plotting the graph (using a graphing calculator, if 
appropriate) corresponding to the table presented above 
and interpolating between 1.5 and 2.50 inches to see how 
much the rainwater rises in the containment structure 
when 2.25 inches of rain falls; (b) computing the amount 
of rainwater that the container rises per inch and then 
multiplying that by 2.25; and/or (c) deriving an equation 
from the table and “plugging in” 2.25 for x. 
 
Very often, these sorts of tasks are used to teach eighth 
graders about the rise-over-run method of computing 
slope.  However, an open-ended in-class discussion of 
how students made sense of and solved this task would 
allow students to engage the Common Core practices 
numbers 1 and 7. In addition, if classroom norms 
permitted, in-class discussion would encourage students 
to construct viable arguments and critique the reasoning 
of others (practice #3). If the original task were extended 
to the use of different shaped containments, students 
would have to model with mathematics (practice #4). 
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Context 
 
As noted in our discussion about assessment, one could 
argue that the original task lacks relevance for the students 
and may not seem to provide a compelling reason for 
being solved. On the other hand, flooding devastation is 
one of many reasons why we might want to predict when 
a natural or human-made water containment structure 
might overflow. Yet even in the case of more localized 
water collection system as in the case of watering a 
garden, the subsequent cleanup to the container’s flooding 
can be time-consuming and messy. 
 
The threat of hurricanes in Florida often leads to the 
draining of water from Lake Okeechobee in an effort to 
stave off flooding (Reid et al., 2016). Similarly, floods 
caused by snow melt or thunderstorms take place 
throughout much of United States and students see the 
resulting damage in the news. Even though drought has 
plagued much of the Western United States (Pacific 
Institute, 2017), including Lake Mead (Worland 2016), 
increased rainfall has ameliorated many of those concerns 
and seems to be motivating questions about the impact of 
too much rainfall on surrounding areas and the possibility 
of draining some water to avoid flooding. These real-
world contexts of how too much rainfall can lead to rising 
waters and flooding are too complex to be incorporated 
into students’ mathematics curriculum without 
modification. But if modified tasks were presented in 
conjunction with science and social studies lessons on the 
environment, it may be possible to use such settings to 
motivate sets of tasks that, individually, are accessible to 
ELL students and that, in the aggregate, lead to a more 
sophisticated set of mathematical understandings. 
 
Language Demands 
 
Assessment tasks should be as easy to read and 
understand as possible because students must read the 
texts by themselves and solve the resulting problems 
without the social processes that provide support during 
instruction.  Also, busy teachers cannot revise every task 
found in their students’ mathematics books. However, it 
is possible for teachers to scaffold a task’s language 
demands in anticipation of when students first read them 

and to be sensitive to those demands during the rapid 
give-and-take of a mathematics lesson. For example, 
teachers can discuss a text’s technical vocabulary, its 
cultural references, and other features as part of 
instruction and students can create and maintain their own 
glossaries of unfamiliar terminology. The glossary may 
be further refined by similar or different uses of a 
particular term in other disciplines and contexts. 
 
In planning language-focused class discussions, teachers 
should remember that, as general rules of thumb, for 
ELLs: 

• passive voice is more difficult to understand than 
active voice; 

• past and complex tenses are more difficult to 
understand than present tense; 

• longer sentences are more difficult to understand 
than shorter sentences when a student has limited 
knowledge of the mathematical concept(s) within 
the text;  

• when precision is required and students have 
some prior understanding of the concepts that are 
involved, technical vocabulary may actually help 
them to understand what is being asked because 
of its precision; 

• when technical vocabulary provides false 
precision or when a student has not encountered 
the basic conceptual underpinnings of that 
terminology, technical vocabulary may render a 
task more difficult; 

• a picture may be “worth a thousand words”, but 
students have to understand what the various 
components of mathematical illustrations refer to 
in order to make use of them; 

• mathematical symbols place their own unique 
demands on someone’s ability to read and to 
understand the information that a task provides 
and what is being asked. 

 
Concluding Comments 

 
Figure 4 provides a visual summary of our Framework 
and some of the salient issues that arise when thinking 
about its utility for classroom instruction.  
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Dimension à 
 
Application 
⬇	

Mathematical 
Concepts  

Mathematical 
Practices 

(Mathematical) Context Language Demands 
(Math, Academic, and 
Everyday) 

Classroom 
Assessment 

Cannot be modified 
without raising 
validity issues 

Cannot be 
modified without 
raising validity 
issues 

Can be modified, with 
care, to motivate and to 
increase text 
comprehensibility 

Can be modified with 
care to increase text 
comprehensibility; 
mathematics 
terminology can provide 
precision 

Curriculum and 
Teaching 

Can be modified 
with care to related 
concepts, depending 
on specificity 

Can be modified 
with care to 
related practices, 
depending on 
specificity 

Can be modified, with 
care, to motivate, to 
increase text 
comprehensibility, and/or 
to extend to new concepts 
or new practices  

Can be modified with 
care to increase text 
comprehensibility; 
mathematics 
terminology can provide 
precision 

Figure 4. Annotated Framework  

From the Language in Math project we learned a lot about 
the challenges of meaningfully teaching mathematics to 
ELL students in ways that allow students to understand 
mathematics and that are consistent with the standards set 
out in the CCSSM.  Being from different disciplines  --  
mathematics education and language and literacy 
education -- we learned that we had to develop ways of 
communicating with one another so that we were talking 
about the same things; for example, what mathematics 
educators mean by semantic structures of arithmetic word 
problems (Secada & Carey, 1990) is quite different from 
what language and literacy educators mean.  We created 
this framework as a first step in organizing our own work 
around complexity of mathematical language found in 
tasks, and of fostering communication among ourselves. 
Through this article, we are taking some first steps in 
sharing that framework with teachers and other educators 
in the hopes that they, too, find this helpful. 
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Discussion And Reflection Enhancement (DARE) Post-Reading Questions 

 
1. Pick a specific mathematics problem and discuss how the eight mathematical practices of CCSSM might play out 

in its exploration. 
 

2. What is an example of a mathematics problem that you needed to revise (either before or after using it with 
students)?  Describe the process or nature of your revision. 

 
3. How would eighth-graders in the city in which you teach relate to the tasks found in Figures 1, 2, and 3 for 

assessment purposes? For instructional purposes?  
 
 
 

 




