Generative AI Tools Adopted by Higher Education Students

Ji Yae Bong, Ph.D.
Beth Oyarzun, Ph.D.
Daniel Maxwell, M.Ed.
Stella Kim, Ph.D.

2025 UNC System Learning and Technology Symposium June 2, 2025

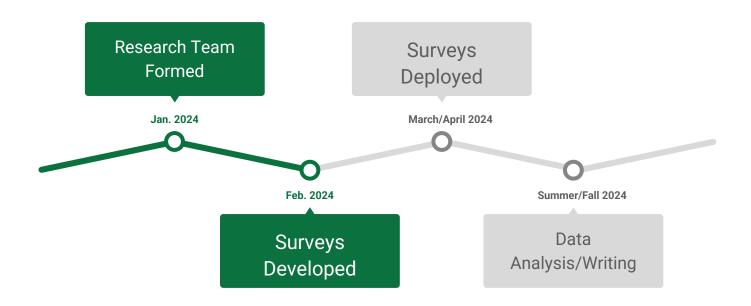
PRESENTERS

Dr. Ji Yae Bong jbong@charlotte.edu

Dr. Beth Oyarzun beth.oyarzun@charlotte.edu

Daniel Maxwell dmaxwel8@charlotte.edu

Dr. Stella Kim stella-kim@charlotte.edu


Our Generative Al Project

Project Purpose

- Assess student and instructor perspectives regarding GenAl use in higher education.
 - Evaluate student and instructor readiness to incorporate
 GenAl into teaching and learning.
 - Identify perceived opportunities and challenges of GenAluse in teaching and learning.

Project Timeline

Participant Demographics

Higher Education Faculty

- 132 faculty members
- 52.3% Female
- 37.9% Male
- 43.9% Undergraduate
 Instructors
- 31% Both Grad & Undergrad
- 41.7% from Social Science
- 53.8% State/Public College or Univ.

Higher Education Students

- 460 students
- 55.0% Female
- 42.6% Male
- 68.9% Undergraduate
- 70.9% Full Time
- 49.6% State/Public College or Univ.

Scale Development

Instrument Development and Validation

No instrument existed to address our research questions.

Three scales were developed and validated:

- GenAl Readiness
- Perceived Benefits of GenAl
- Perceived Challenges in GenAl

Faculty and Student Perspectives

Studies: Faculty and Student Perspectives

- 1. How are GenAl tools being used by faculty and students in their teaching and learning practices within higher education?
- 2. In what ways do instructors and students differ in their perceptions of:
 - **a. Readiness**: (R1) GenAl comprehension, (R2) ethical awareness of GenAl, and (R3) GenAl utilization and proficiency
 - **b. Benefits**: (B1) effectiveness and (B2) empowerment
 - **c.** Challenges: (C1) ethics and privacy concerns, (C2) negative educational impact, and (C3) accuracy and sensitivity

Studies: Faculty and Student Perspectives

- 3. What demographic differences exist in perceived readiness, benefits, and challenges related to the use of Gen AI tools?
- 4. How do groups (clusters) of instructors and studentscategorized by their levels of GenAl readiness-differ in their perceptions of the benefits and challenges of using GenAl for teaching and learning?

Publications from this project

Faculty Paper

• Oyarzun, B., Kim, S., Bong, J., Maxwell, D. (under review). Higher Education Instructor's Generative AI Use and Perceptions.

Student Paper

 Maxwell, D. G., Oyarzun, B., Kim, S., & Bong, J. (2025). Generative AI in higher education: Demographic differences in student perceived readiness, benefits, and challenges. *TechTrends*. https://doi.org/10.1007/s11528-025-01109-6

Instrument Validation Paper

• Kim, S. Y., Maxwell, D. G., Bong, J., & Oyarzun, B. (under review). Development and validation of generative artificial intelligence readiness and perception scale.

Faculty and Student Comparison paper

• Bong, J., Oyarzun, B., Maxwell, D. G., Kim, S. Y. (under review). Harmony or dissonance? Exploring instructors' and students' readiness and perceptions of generative AI in higher.

UNC System Learning and Technology Symposium

Generative Al Tools Adopted by Higher Education Students

Questions

- What are the most commonly used GenAl tools among students in higher education?
- For what purposes do students in higher education use these most commonly adopted GenAl tools?

Initial sample

- 460 higher education students
- Final sample used
 - 293 students
 - Included only those who responded to targeted survey questions
- Data cleaning steps
 - Removed: duplicate responses, missing or incomplete data, incorrect answers, low-quality responses, nonsensical entries, and non-English responses

- 293 students from **36 U.S. states**
- **60.75% female** (n=178)
- 57.37% attended public/state
 colleges or universities (n=168)
- **73.72**% full-time students (n=216)
- Age distribution
 - o **18-24 years: 54.23**% (n=159)
 - 25-34 years: 43.04% (n=126)
- Academic level
 - Juniors: 24.23% (n=71)
 - Seniors: 23.52% (n=69)
 - Master's students: 23.21% (n=68)

Data Analysis Approach

Tool Identification & Categorization (RQ1)

- Tools mentioned: GenAl tools, models, and frameworks listed by students
 - 197 students listed 1 tool
 - 37 students listed 2 tools
 - 59 students listed 3 tools
 - Total inputs: 446
 - Valid inputs analyzed: 364 (after removing 82 nonspecific responses)

Data Analysis Approach

Tool Identification & Categorization (RQ1)

- Information Collection: Used <u>Perplexity.ai</u> to gather tool functions and applications
- Categorization:
 - Initial categories identified using ChatGPT, Copilot, and researcher expertise
 - Frequency of tool mentions counted in Excel

Data Analysis Approach

Content Analysis (RQ2)

- NVivo & Excel
- Process
 - Open-ended responses reviewed multiple times
 - Themes identified and responses grouped accordingly
 - Mentions counted per theme (i.e., purpose)

Results Categorization of GenAl Tools, Models, and Frameworks

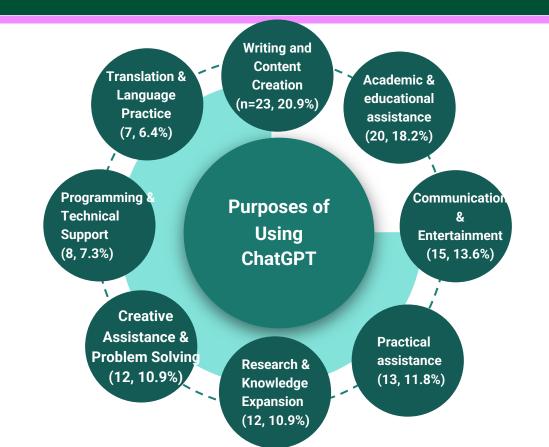
Frequency of Generative AI Tool Mentions

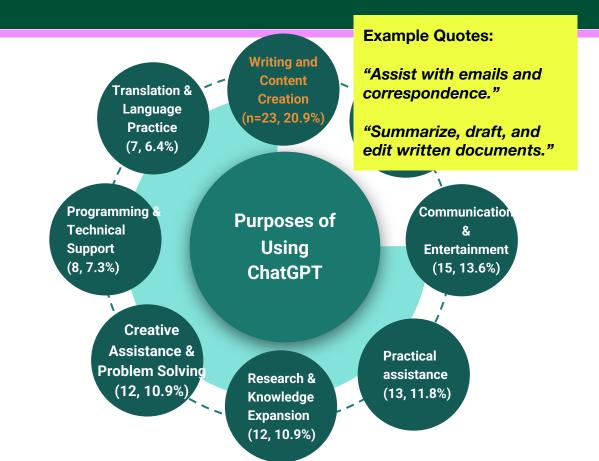
1 (n=132, 45.05%)	2 (n=7, 2.39%)	3 (n=6, 2.04%)	4 (n=5, 1.70%)
D. ChatGPT	B. BERT	A. PyTorch	F. DALL-E
		D. Gemini	F. Midjourney
		I. Grammarly	
		J. Magic School AI	
5 (n=4, 1.36%)	6 (n=3, 1.02%)	7 (n=2, 0.68%)	8
A. Deep AI	A. Keras	A. Hugging Face	83 other tools, models,
A. Scikit-learn	B. NLP	Transformers	and frameworks (n=1,
A. TensorFlow	B. T5	A. IBM Watson	0.34%; refer to Table 1)
B. GPT-3	D. Bing AI	B. BART	
B. RoBERTa	D. Character	B. CTRL	
B. XLNet	D. Claude	B. DeBERTa	
E. GPT-J	D. Copilot	B. ELECTRA	
G. Descript	E. Jasper	B. Stanford NLP	
I. Tome	E. QuillBot	C. Codex	
	G. DeepSpeech	D. AI Dungeon	
	I. MetaAI	D. Dialogflow	
	I. Notion AI	D. Rasa NLU	
	I. Snapchat AI	F. DeepArt	
	•	F. GAN	
		F. Runway	
		G. Otter	
		I. Linet	
		I. SingleStore Notebook	

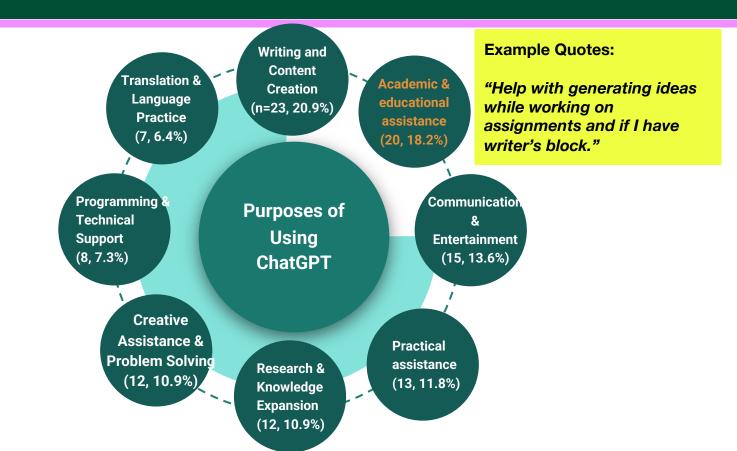
Note: Categories: A. General AI Frameworks and Platforms; B. Language Models and NLP Frameworks; C. Programming and Development; D. Conversational AI and Chatbots; E. Generative AI for Text-to-Content Creation; F. Generative AI for Images and Art; G. Speech Recognition and Audio Processing; H. Image and Object Recognition; I. Specialized AI for Specific Use Cases.

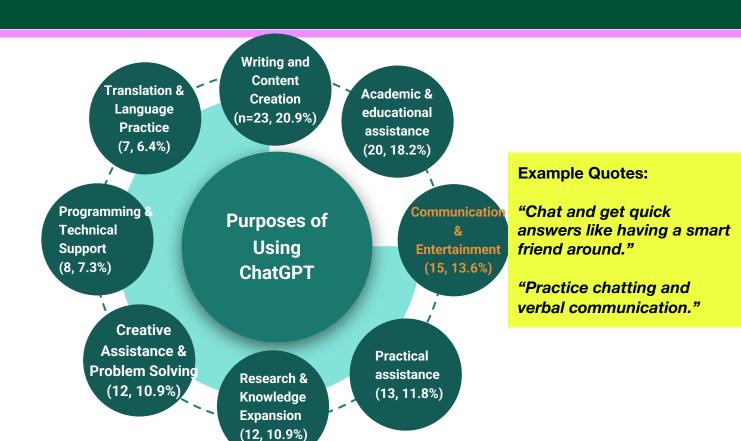
GenAl Tools, Models, and Frameworks Used (1-2)

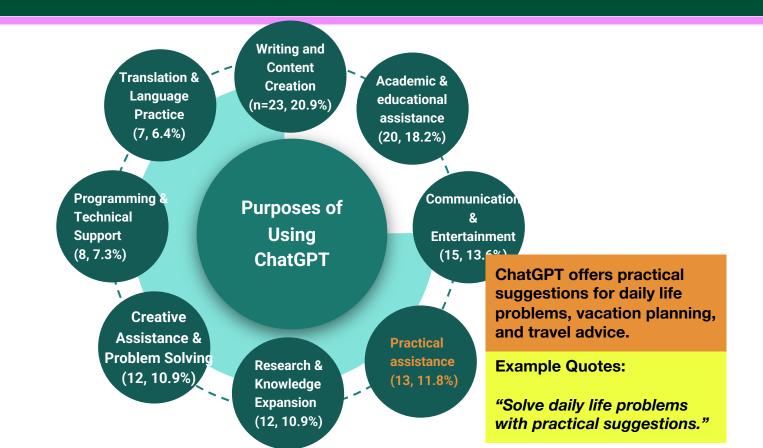
Table. GenAI Tools, Models, and Frameworks Utilized by Students in Higher Education

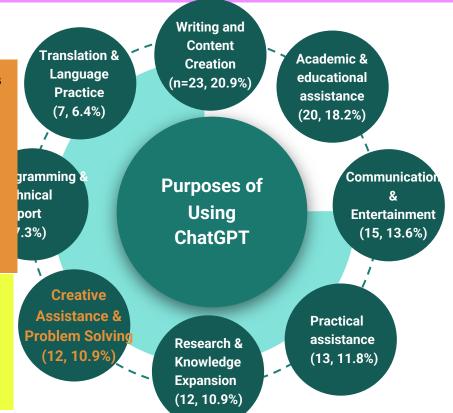

Category	Generative AI Too	ols, Models, and Framework	s (N=130 tools)
	Amazon SageMaker	IBM Watson	Scikit-learn
General AI Frameworks	Deep AI	Keras	TensorFlow
and Platforms	Google Cloud AI	LangChain	Turi Create
	Hugging Face Transformers	PyTorch	
	ALBERT	Gensim	NLP
	BART	GPT-3	RoBERTa
	BERT	GPT-4	Spacy
Language Models and	CTRL	InstructGPT	Stanford NLP
NLP Frameworks	DeBERTa	LaMDA	T5
	ELECTRA	LLM	TransformerXL
	ERNIE	MarianNMT	Word2Vec
	FastText	NLTK	XLNet
Programming and	Codex	XGBoost	
Development	LSTM	VAE	
	AI Dungeon	Claude	Poe
	Amazon Alexa	Copilot	Rasa
Conversational AI and	Bing AI	Gemini	Rasa NLU
Chatbots	Bot Framework	Dialogflow	Replika
	Character	Grok	Siri
	ChatGPT	Pi	WhatsApp AI
Companying Al for Tt	AI-Writer	Jasper	StoryAI
Generative AI for Text-	Compose AI	NovelAI	Talk to Transformer
to-Content Creation	GPT-J	QuillBot	TextGenRNN

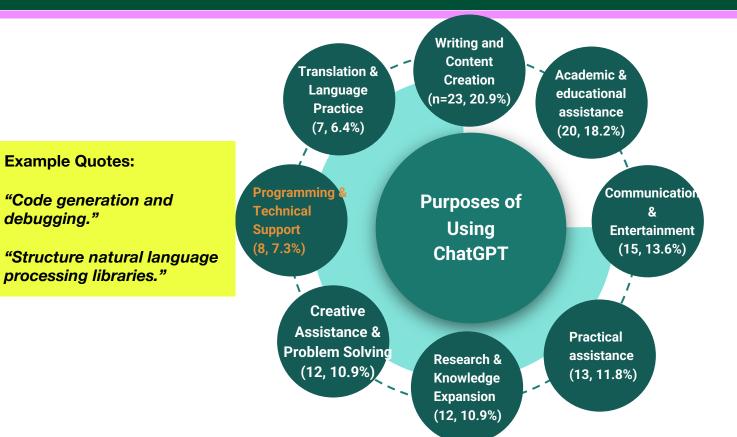

Note: This categorization is based on the primary functions and domain of application of these tools, models, and frameworks. Some of them may have overlapping functionalities or fit into multiple categories.

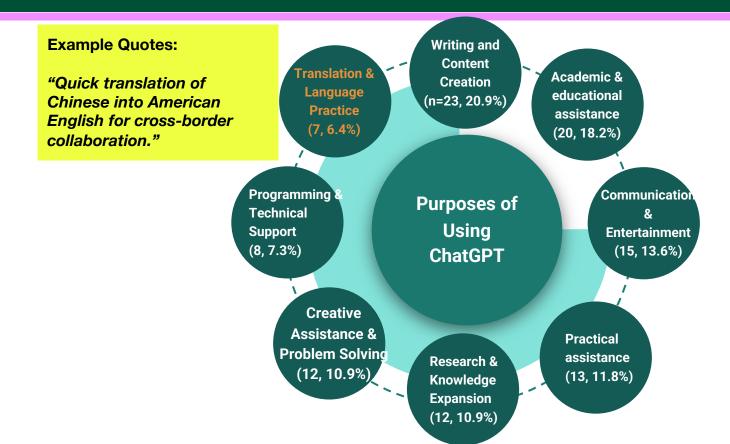

GenAl Tools, Models, and Frameworks Used (2-2)


Category	Generative AI Tools, Models, and Frameworks (N=130 tools)			
	Artbreeder	GAN	OpenAI Image	
	Artflow AI	GANBreeder	Recraft AI	
	DALL-E	GauGAN	Runway	
Generative AI for	DeepArt	Lensa	RunwayML	
Images and Art	DeepDream	Midjourney	Sketch-RNN	
	DeepFaceLab	Neural Doodle	Stable Diffusion	
	Deepfake	OPENArt AI	StyleGAN	
	FractalNow			
C	DeepSpeech	Otter	VoiceForge	
Speech Recognition and Audio Processing	Descript	Suno AI		
Image and Object Recognition	CLIP	ImageRecognition	OpenCV	
	Adobe AI Assistant	Magic School AI	Smart Sports Tool	
	AI ToolBox	MetaAI	SmartCompose	
	BrainlyAI	MuseNet	SmartReply	
	Canva	Neural Talk	Snapchat AI	
C	CaptionBot	Notion AI	Squirrel AI	
Specialized AI for	ChatGPT for YouTube	Project Planner	Summarizer	
Specific Use Cases	ChatPDF	SciSpace	Sythensia	
	CommonsenseQA	SingleStore Notebook	Tome	
	DeepMoji	SmartArt Tool	Wolfram Alpha	
	Eduaid AI	Smart Environmental	WordClouds	
	Grammarly	Protection Tool	Zippy	
	Linet			

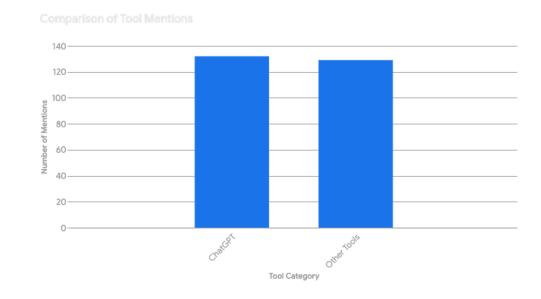

Note: This categorization is based on the primary functions and domain of application of these tools, models, and frameworks. Some of them may have overlapping functionalities or fit into multiple categories.






ChatGPT inspires new ideas for design projects, video games, and interactive experiences.
ChatGPT automates customer service, supports quick decision-making, solves math problems, and provides structured solutions for life problems.

Example Quotes:


"Generate ideas and concepts for video games and interactive experiences."

- ChatGPT mentioned by 132 students (45.05%)
- Far exceeds mentions of other tools (129 tools mentioned by smaller groups)
- ChatGPT popularity linked to:
 - Versatility across academic and personal tasks
 - Support for writing, communication, entertainment, technical help, and more

- Implications of ChatGPT's Popularity
 - Highlights generative Al's transformative potential
 - Reflects a shift in student learning and problem-solving approaches
 - Raises concerns about over-reliance on a single tool (ChatGPT)
 - Possible reasons for limited use of other tools
 - Lack of awareness
 - Perceived complexity
 - Limited training/resources
 - Timing of Survey
 - Usage may vary by academic discipline (e.g., language vs. computer science students)

- Institutional Role & Ethical Considerations
 - Guide students in effective and ethical GenAl use
 - Address issues like data privacy, academic integrity, and equitable access
 - Need for policies and frameworks to support responsible Al use

Future Research Directions

- Conduct longitudinal studies to track evolving usage patterns
 - As new Al tools continue to emerge rapidly, there is a growing need for further research to identify which tools are being used and for what specific purposes.
- Investigate:
 - Factors influencing tool preference (usability, accessibility, etc.)
 - Disciplinary differences in GenAl use
 - Impact of training and curriculum integration

Resources

OneIT AI Software Guidance https://oneit.charlotte.edu/ai-software-guidance/

AI SOFTWARE GUIDANCE

This list provides guidance on using campus-wide, specialized, and popular AI software with university data. All non-campus-wide software, including free and research-related requests, must fill out the <u>Software & IT-Related</u>

Request Form.

- Green indicates the software is approved for use; a campus agreement is in place with approved data security and privacy policies.
- Yellow indicates use with caution; a campus-wide agreement is NOT in place. Even if
 the software is on this list, new users must submit the <u>Software & IT-Related Request</u>
 Form form through Purchasing.
 - . Free Version: Do not use with Data Levels 1, 2 or 3.
 - <u>Paid Version:</u> Do not use with <u>Data Levels 1, 2 or 3.</u> Use of Level 1-3 Data <u>MUST</u> be reviewed and approved in advance for privacy, security & compliance. Purchases must follow <u>campus procurement guidelines</u>.
- Red indicates do not use. No agreement is in place to protect university data.

Note: If you have a question about buying or enabling new AI software, contact your OneIT Executive Director. Additionally, if you want to add a new virtual AI Assistant on any university website, use the IT Project governance process.

Highlights:

- Provides clear guidance
- Aligned with <u>UNESCO</u> Recommendations
- Establishes 'Green Light' campus-friendly tools

AI Adoption Framework

Perkins, M., Furze, L., Roe, J., & MacVaugh, J. (2024). The Artificial Intelligence Assessment Scale (AIAS): A framework for ethical integration of generative AI in educational assessment. *Journal of University Teaching and Learning Practice*, 21(6), 49-66. https://doi.org/10.53761/q3azde36

	1	NO AI	The assessment is completed entirely without AI assistance. This level ensures that students rely solely on their knowledge, understanding, and skills. AI must not be used at any point during the assessment.	
2		AI-ASSISTED IDEA GENERATION AND STRUCTURING	Al can be used in the assessment for brainstorming, creating structures, and generating ideas for improving work. No Al content is allowed in the final submission.	
	3	AI-ASSISTED EDITING	Al can be used to make improvements to the clarity or quality of student created work to improve the final output, but no new content can be created using Al. Al can be used, but your original work with no Al content must be provided in an appendix.	
	4	AI TASK COMPLETION, HUMAN EVALUATION	Al is used to complete certain elements of the task, with students providing discussion or commentary on the Al-generated content. This level requires critical engagement with Al generated content and evaluating its output. You will use Al to complete specified tasks in your assessment. Any Al created content must be cited.	
	5	FULL AI	Al should be used as a 'co-pilot' in order to meet the requirements of the assessment, allowing for a collaborative approach with Al and enhancing creativity. You may use Al throughout your assessment to support your own work and do not have to specify which content is Al generated.	

Table 1 The Al Assessment Scale (p.55)

Al literacy

The results point to the need for stronger AI literacy skills for both students and faculty.

Resources to gain AI literacy skills

- Al Literacy Curriculum Hub
- Survival of best fit game

