

The Cotton Uncharacterized Protein Annotation Course-based Undergraduate Research Experience (CUPA-CURE) engages students in an authentic research experience that contributes to the functional characterization of the cotton genome by manually annotating cotton proteins of unknown function.

As a characteristic High Impact Practice (HIP), this CURE provides students with benefits such as increased engagement and confidence in the field while at the same time developing subject-specific skills in bioinformatics and literature review.

Learning Objectives address recommended subject-specific content in molecular biology (Structure and Function Core Concepts from AAAS 'Vision and Change^{'2),} core competencies in bioinformatics (Core Competencies 1, 2, 4, 5, 8 from NIBLSEs³), and basic scientific literacy skills related to finding and evaluating sources (TOSLS⁴).

Sequence

Where does the protein function; What are predicted superfamily, family, domains, and motifs

- Predicting subcellular location and transmembrane regions
- Navigating databases: UniProt and InterPro

Homology

What taxa have homologs; Where are conserved residues; How is the family structured

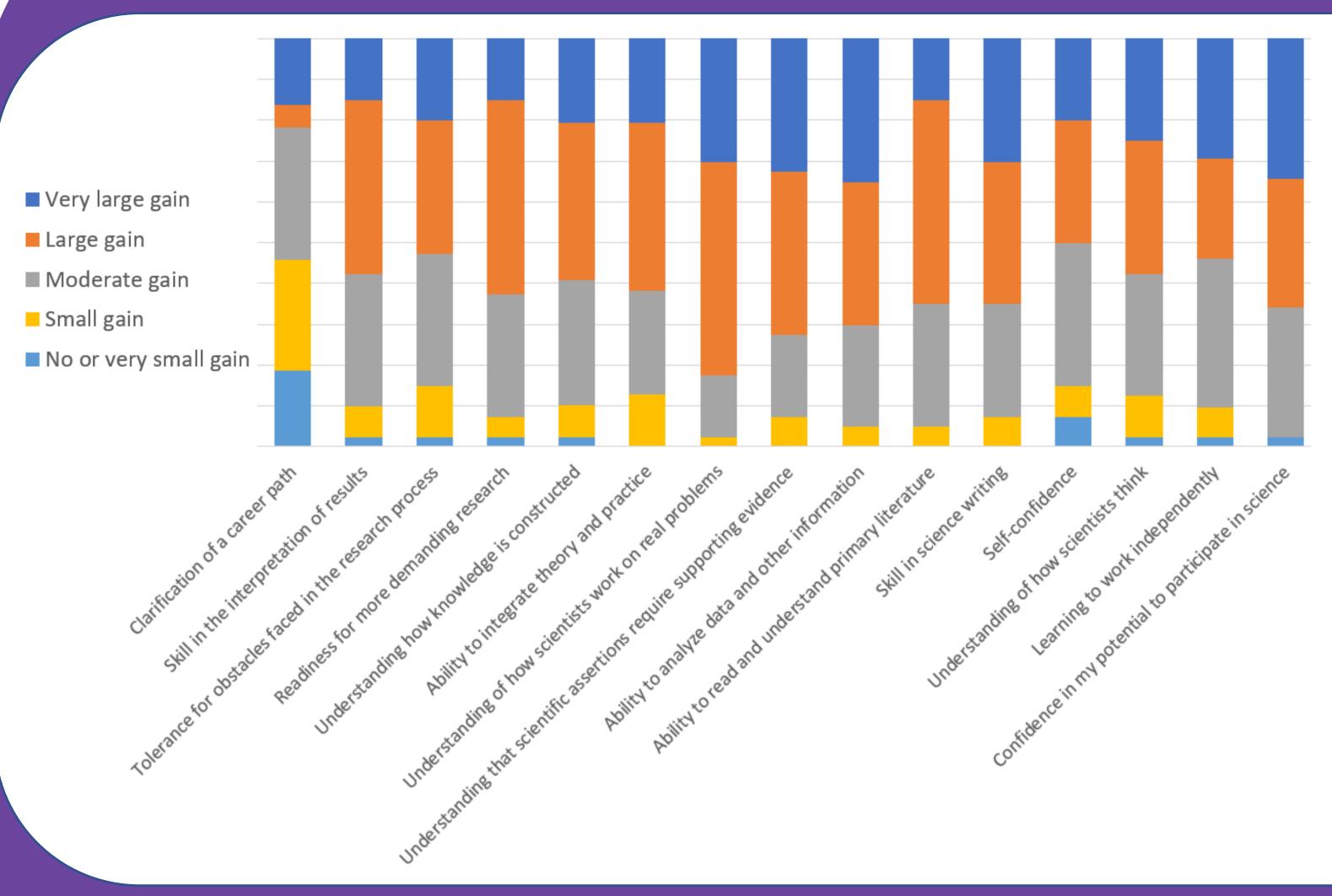
- Analyzing trees of gene families for relatedness
- Annotating homolog alignments using literature findings

Structure

What regions can be confidently modeled; Are there similar structures; Where are potential bindings sites

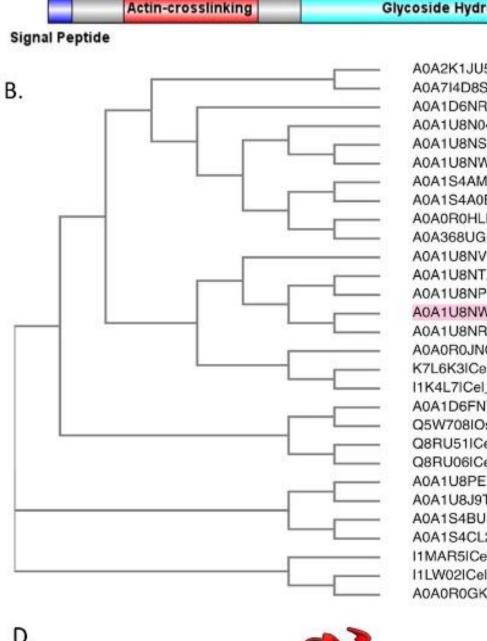
- Modeling and visualizing structural features
- Exploring markers of potential binding sites

Computational CUREs also have the unique advantage of adaptable modality and accessibility that minimize barriers to participation. This CURE has been taught at two institutions as an in-person capstone, an online summer course, an independent research project and a biochemistry lab.


References

- 1. D. Pusca and D. Northwood, Implementation of high-impact practices in engineering design courses. 2018. World Trans Eng and Tech Ed. 16(2) 2. American Association for the Advancement of Science. Vision and Change in Undergraduate Biology Education: A Call to Action. 2011
- 3. Network for Integrating Bioinformatics into Life Sciences Education, Bioinformatics core competencies for undergraduate life sciences education. 2018.
- PLoS ONE; 13(6): e0196878
- 4. Developing a Test of Scientific Literacy Skills (TOSLS). 2017. CBE—Life Sciences Education. 11(4): doi.org/10.1187/cbe.12-03-0026 5. https://www.grinnell.edu/academics/resources/ctla/assessment/cure-survey

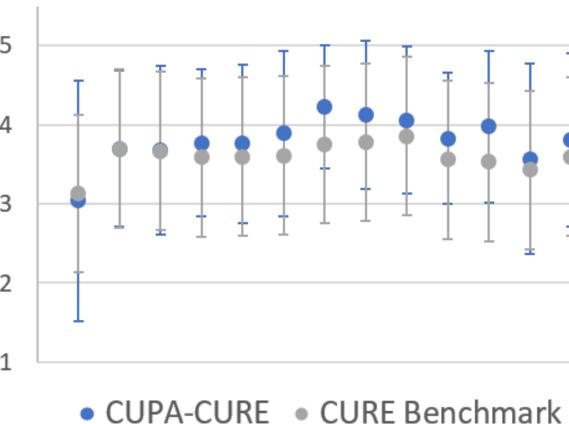
CUPA-CURE: A computational course-based undergraduate experience **Amanda Storm¹** and Amanda Hulse-Kemp^{2,3}



Assessment indicates comparable reported gains in standard CURE measures

Student research is professionally communicated and contributes to the field

- Students communicate results in format of microPub article www.micropublication.org
- Interested students can continue with manuscript submission and revisions as first author
- 2 published, 4 submitted and indexed to CottonGen database



176 212

CURE materials (Guided Notebooks and Videos) available for use, contact arstorm@wcu.edu

UNC System Learning and Technology Journal, 1(1), 8/28/2023 DOI: https://journals.charlotte.edu/lt

¹Western Carolina University; ²USDA-ARS; ³NCSU

- Students completed pre and post surveys including items from the Grinnell CURE survey⁵
- Gains reported in practical skills and \bullet attitudes about research
- Mean student-reported gains from multiple semesters (n=42) were comparable to means of 3-year aggregate CURE benchmarks

499	С.			_		
U57ICel_PHYP 0.24792 BS3ICel_PHYP 0.15499 IRZ7IGlu13bg_MAIZ 0.19339	C.thermocellumCelC_P0C2S3 C.albicansXOG1_P29717 P.pastorisEXG_Q2TCV2 cottonGH5BG_A0A1U8NW40 riceGH5BG_Q8RU06 cottonGH5BG_A0A1U8J9T9	106 81 213 223	QKHWSTWITEQDFKQISN QQHWSTFYDEKDFQDIAA QAHWDSYITEQDFKFISA REHWRTYIVESDFKFIST	AGFDHVRLPFDYPIIESDDNV LGLNFVRIPIGYWAFQLL.DNI YGLNFVRIPIGYWAFQLL.DDI NGLSAVRIPVGWWIAQDPNPPI SGLNAVRIPVGWWIASDPNPPI NGLNAVRIPVGWWIASDPTPPI **** **** **	DPYVQGQVQYLEKALGWA DPYVQGQEEYLDKALEWS KPFVGGSLKALDNAFTWA APFVGGSLQALDNAFKWA PPFVGGSLQALDNAFQWA	A R S R A E
044IProbg_Gh 0.11311 NS10IProbg_Gh 0.04618 NWB4IProbg_Gh 0.02313 MH7IProbg_TOB 0.03397 NOB4IProbg_TOB 0.02959 ILI1ICel_SOY 0.10435 IGI5ICel_SOY 0.05746	C.thermocellumCelC_P0C2S3 C.albicansXOG1_P29717 P.pastorisEXG_Q2TCV2 cottonGH5BG_A0A1U8NW40 riceGH5BG_Q8RU06 cottonGH5BG_A0A1U8J9T9	165 140 273 283	NIRVWIDLHGAPGSONG. GLKVWIDLHGAPGSONG. GMKVVVDLHAAKASONR. NLGVIVDLHAAPGSONP.	FKTSTLFEDPNQQKI FDNSGLRDSYNFQNGDNTQ FDNSGKRDSWDFQNGNNVQ FEHSGARDGFLEWGDSNIDI FEHSASRDGSQDWGTTDANIA WEHSGSRDSSQEWGKTDETIT * ** *	VTLNVLNTIFKK <mark>Y</mark> GGNEY VTLDVLKYISKKYGTTDY ETVAVIEFLAARYGGS. QTVQVIDFLTHR <mark>Y</mark> ASS.	YS YY
IVS5IProbg_Gh 0.11744 ITX3IGluc_Gh 0.01024 IPG3IGluc_Gh 0.00784 IW40IGluc_Gh 0.01691 IRZ3IGluc_Gh 0.01315 INC7IUncp_SOY 0.16634 Cel_SOY 0.02733 el_SOY 0.02447	C.thermocellumCelC_P0C2S3 C.albicansXOG1_P29717 P.pastorisEXG_Q2TCV2 cottonGH5BG_A0A1U8NW40 riceGH5BG_Q8RU06 cottonGH5BG_A0A1U8J9T9	222 197 327 339	HIAFELLNEVVEPD VIGIELLNEPLGPV VIGIQLLNEPLGPI LGAIELMNEPWAPD LLAVELLNEPLAPG LYAVELINEPLSPG * ***	C.thermocellumCelC_ C.albicansXOG1_P297 P.pastorisEXG_Q2TCV cottonGH5BG_A0A1U8N riceGH5BG_Q8RU06 cottonGH5BG_A0A1U8J	717 329 GEWSAAL 72 304 GEWSAAL 740 437 GEWTGEF 449 GEWVAEW	
NV3ICel_MAIZ 0.15393 Os05g_ORYSJ 0.13927 Cel_ORYSJ 0.14873 Cel_ORYSJ 0.13581 PER3IGluc_Gh 0.01261 9T9IGluc_Gh 0.00518 8UR7IProbg_TOB 0.01828 CL21IProbg_TOB 0.02109 Cel_SOY 0.15321 Cel_SOY 0.07782 GKE4ICel_SOY 0.10238	humanFSCN1_Q16658 CorallococcusGH16_A0A1X9QLV9 cottonGH5BG_A0A1U8NW40 riceGH5BG_Q8RU06	1 44 45 53		VQIQFGLINCGNKYLTAEA QTVWLKA.CATQKYVSADRNLG AHVQFLS.TKLNKYLCAENG TQLQFKS.VTQNMYLCAEQG * * *	GGGTVLVANRISPSDWET	FC
E.			His281 Arg237 Trp474 Asn334 Glu438	F.		
			Glu335 His394 Tyr396	1 2 3 4 5 6 7 Variable Average	7 8 9 Conserved	3
					The bold and bod in the ball	

View microPub

